Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 6, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Kamat, Prashant V (Ed.)Redoxmers are organic molecules that serve as charge carriers in redox flow batteries. While these materials are affordable and easy to source, insufficient stability of their charged states (radical ions) remains a challenge. A common reaction of these species is their disproportionation. This reversible reaction yields unstable multiply charged states, shifting the overall charge transfer equilibrium toward the decomposition products. Here we show how kinetic controls can be engineered into a redoxmer molecule to suppress these unwanted charge transfer reactions. This approach is used to transform Wurster’s blue, which is historically the first example of a stable radical ion in organic chemistry, into an exceptionally durable redoxmer molecule that persists over thousands of electrochemical cycles.more » « lessFree, publicly-accessible full text available December 13, 2025
- 
            Reconstructing a three-dimensional ocean sound speed field (SSF) from limited and noisy measurements presents an ill-posed and challenging inverse problem. Existing methods used a number of pre-specified priors (e.g., low-rank tensor and tensor neural network structures) to address this issue. However, the SSFs are often too complex to be accurately described by these pre-defined priors. While utilizing neural network-based priors trained on historical SSF data may be a viable workaround, acquiring SSF data remains a nontrivial task. This work starts with a key observation: Although natural images and SSFs admit fairly different characteristics, their denoising processes appear to share similar traits—as both remove random components from more structured signals. This observation allows us to incorporate deep denoisers trained using extensive natural images to realize zero-shot SSF reconstruction, without any extra training or network modifications. To implement this idea, an alternating direction method of multipliers (ADMM) algorithm using such a deep denoiser is proposed, which is reminiscent of the plug-and-play scheme from medical imaging. Our plug-and-play framework is tailored for SSF recovery such that the learned denoiser can be simultaneously used with other handcrafted SSF priors. Extensive numerical studies show that the new framework largely outperforms state-of-the-art baselines, especially under widely recognized challenging scenarios, e.g., when the SSF samples are taken as tensor fibers. The code is available at https://github.com/OceanSTARLab/DeepPnP.more » « less
- 
            Belharouak, Ilias (Ed.)Due to their almost unlimited scalability, redox flow batteries can make versatile and affordable energy storage systems. Redox active materials (redoxmers) in these batteries largely define their electrochemical performance, including the life span of the battery that depends on the stability of charged redoxmers. In this study, we examine the effects of expanding the π-system in the arene rings on the chemical stability of dialkoxyarene redoxmers that are used to store positive charge in RFBs. When 1,4-dimethoxybenzene is π-extended to 1,4-dimethoxynaphthalene, a lower redox potential, improved kinetic stability, and longer cycling life are observed. However, when an additional ring is fused to make 9,10-dimethoxyanthracene, the radical cation undergoes rapid O-dealkylation possibly due to increased steric strain that drives methoxy out of the arene plane thus breaking the π-conjugation with O 2p orbitals. On the other hand, the planar structure of 1,4-dimethoxynaphthalene may facilitate second-order reactions of radical cations leading to their neutralization in the bulk. Our study suggests that extending the π-system changes reactivity in multiple (sometimes, opposite) ways, so lowering the oxidation potential through π-conjugation to improve redoxmer stability should be pursued with caution.more » « less
- 
            Kamat, Prashant V (Ed.)Redox-active molecules, or redoxmers, in nonaqueous redox flow batteries often suffer from membrane crossover and low electrochemical stability. Transforming inorganic polyionic redoxmers established for aqueous batteries into nonaqueous candidates is an attractive strategy to address these challenges. Here we demonstrate such tailoring for hexacyanoferrate (HCF) by pairing the anions with tetra-n-butylammonium cation (TBA+). TBA3HCF has good solubility in acetonitrile and >1 V lower redox potential vs the aqueous counterpart; thus, the familiar aqueous catholyte becomes a new nonaqueous anolyte. The lowering of redox potential correlates with replacement of water by acetonitrile in the solvation shell of HCF, which can be traced to H-bond formation between water and cyanide ligands. Symmetric flow cells indicate exceptional stability of HCF polyanions in nonaqueous electrolytes and Nafion membranes completely block HCF crossover in full cells. Ion pairing of metal complexes with organic counterions can be effective for developing promising redoxmers for nonaqueous flow batteries.more » « less
- 
            Developing synthetically useful enzymatic reactions that are not known in biochemistry and organic chemistry is an important challenge in biocatalysis. Through the synergistic merger of photoredox catalysis and pyridoxal 5′-phosphate (PLP) biocatalysis, we developed a pyridoxal radical biocatalysis approach to prepare valuable noncanonical amino acids, including those bearing a stereochemical dyad or triad, without the need for protecting groups. Using engineered PLP enzymes, either enantiomeric product could be produced in a biocatalyst-controlled fashion. Synergistic photoredox-pyridoxal radical biocatalysis represents a powerful platform with which to discover previously unknown catalytic reactions and to tame radical intermediates for asymmetric catalysis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
